Skip to main content

async.h - asynchronous, stackless subroutines in C

The async/await idiom is becoming increasingly popular. The first widely used language to include it was C#, and it has now spread into JavaScript and Rust. Now C/C++ programmers don't have to feel left out, because async.h is a header-only library that brings async/await to C!

Features:

  1. It's 100% portable C.
  2. It requires very little state (2 bytes).
  3. It's not dependent on an OS.
  4. It's a bit simpler to understand than protothreads because the async state is caller-saved rather than callee-saved.
#include "async.h"

struct async pt;
struct timer timer;

async example(struct async *pt) {
    async_begin(pt);
    
    while(1) {
        if(initiate_io()) {
            timer_start(&timer);
            await(io_completed() || timer_expired(&timer));
            read_data();
        }
    }
    async_end;
}

This library is basically a modified version of the idioms found in the Protothreads library by Adam Dunkels, so it's not truly ground breaking. I've made a few tweaks that make it more understandable and generate more compact code, and I also think it more cleanly maps to the async/await semantics than it does to true threading.

Protothreads and async.h are both based around local continuations, but where protothreads are callee-saved, async.h is caller-saved. This eliminates the need to pass in the local continuation to any async operations except async_begin. This simplifies the macros that implement the async/await idiom, and even simplifies code that uses async.h.

Here's a simple example of fork-join style "parallelism":

#include "async.h"

typedef struct { 
    async_state;
    struct async nested1;
    struct async nested2;
} example_state;
example_state pt;

async nested(struct async *pt){
    async_begin(pt);
    ...
    async_end;
}

async example(example_state *pt) {
    async_begin(pt);

    // fork two nested async subroutines and wait until both complete
    async_init(&pt->nested1);
    async_init(&pt->nested2);
    await(async_call(nested, &pt->nested1) & async_call(nested, &pt->nested2));
    
    // fork two nested async subroutines and wait until at least one completes
    async_init(&pt->nested1);
    async_init(&pt->nested2);
    await(async_call(nested, &pt->nested1) | async_call(nested, &pt->nested2));

    async_end;
}

Comments

przemub said…
'Tis more than cool! Yet another reminder that preprocessor enables some real magic.

Popular posts from this blog

Dual/Codual numbers for Forward/Reverse Automatic Differentiation

In my last  two posts  on automatic differentiation (AD), I described some basic primitives that implement the standard approach to forward mode AD using dual numbers, and then a dual representation of dual numbers that can compute in reverse mode. I'm calling these "co-dual " numbers, as they are the categorical dual of dual numbers. It didn't click at the time that this reverse mode representation seems to be novel. If it's not, please let me know! I haven't seen any equivalent of dual numbers capable of computing in reverse mode. When reverse mode AD is needed, most introductions to AD go straight to building a graph/DAG representation of the computation in order to improve the sharing properties and run the computation backwards, but that isn't strictly necessary. I aim to show that there's a middle ground between dual numbers and the graph approach, even if it's only suitable for pedagogical purposes. Review: Dual Numbers Dual numbers augment

The Fun of Floating Point Numbers in one Image

Programming with floating point is always fun. Here's a nice little screen capture summarizing the insanity that sometimes arises: .NET keeps 9 digits of precision internally, but typically only displays 7 digits of precision, so I had a hell of a time figuring out why a value from what's effectively a no-op was exceeding the 0.33F threshold I was looking for. Losing equational reasoning is always fun, but this is even more bizarre than usual. Yay floating point!