Skip to main content

Reading PDFs on the iPhone the moderately difficult way

Taking a break from my programming language blogging, I thought I'd describe a recent adventure with my new iPhone: reading PDFs. The iPhone can read PDFs, but insists on doing so only when reading the PDF from the network in some way, ie. via the mail client or Safari.

Being the programming language enthusiast I am, I have plenty of papers stored locally on my machine which I'd like to read on the go, and network access is less than desirable for obvious reasons. Unfortunately, Apple disabled the obvious answer to local browsing: using the "file://" URI scheme. Very stupid of them IMO.

Fortunately, I'm an "unscrupulous" person, because I jailbroke my iPhone so I could install third-party apps. So if network access is required to view PDFs in Safari, then I'll just have to access local files over the network! The way that's been done for over 20 years is available on the iPhone: a web server.

Both Apache and LightTPD are available in Installer.app, and I chose the latter; I just find the configuration less obtuse than Apache's. You will need OpenSSH installed as well. I also recommend UICtl so you can load/unload the web server only when you need it.

Once everything is installed, I ssh'd to the iPhone, opened the lighttpd config file at /usr/local/etc/lighttpd.conf, changed the root directory to point to /var/root/PDFs (or place it wherever you like), and added:
dir-listing.activate = "enable"
config line to enable directory browsing. Then using UICtl, I unloaded and reloaded lighttpd.

Finally, I opened up Safari on the iPhone and bookmarked http://127.0.0.1/

Voila! I have access to all my local PDFs via Safari. :-)

Browsing and viewing PDFs is very easy, unlike other schemes using the "data:" URI scheme. Of course, the setup is moderately difficult for anybody who isn't versed in the basics of unix and the command shell.

Naturally, I'd much prefer a native app, or at the very least, local browsing via the file:// URI scheme in Safari. I'm keeping my fingers crossed. :-)

Comments

Popular posts from this blog

async.h - asynchronous, stackless subroutines in C

The async/await idiom is becoming increasingly popular. The first widely used language to include it was C#, and it has now spread into JavaScript and Rust. Now C/C++ programmers don't have to feel left out, because async.h is a header-only library that brings async/await to C! Features: It's 100% portable C. It requires very little state (2 bytes). It's not dependent on an OS. It's a bit simpler to understand than protothreads because the async state is caller-saved rather than callee-saved. #include "async.h" struct async pt; struct timer timer; async example(struct async *pt) { async_begin(pt); while(1) { if(initiate_io()) { timer_start(&timer); await(io_completed() || timer_expired(&timer)); read_data(); } } async_end; } This library is basically a modified version of the idioms found in the Protothreads library by Adam Dunkels, so it's not truly ground bre

Simple, Extensible IoC in C#

I just committed the core of a simple dependency injection container to a standalone assembly, Sasa.IoC . The interface is pretty straightforward: public static class Dependency { // static, type-indexed operations public static T Resolve<T>(); public static void Register<T>(Func<T> create) public static void Register<TInterface, TRegistrant>() where TRegistrant : TInterface, new() // dynamic, runtime type operations public static object Resolve(Type registrant); public static void Register(Type publicInterface, Type registrant, params Type[] dependencies) } If you were ever curious about IoC, the Dependency class is only about 100 lines of code. You can even skip the dynamic operations and it's only ~50 lines of code. The dynamic operations then just use reflection to invoke the typed operations. Dependency uses static generic fields, so resolution is pretty much just a field access + invoking a

Easy Automatic Differentiation in C#

I've recently been researching optimization and automatic differentiation (AD) , and decided to take a crack at distilling its essence in C#. Note that automatic differentiation (AD) is different than numerical differentiation . Math.NET already provides excellent support for numerical differentiation . C# doesn't seem to have many options for automatic differentiation, consisting mainly of an F# library with an interop layer, or paid libraries . Neither of these are suitable for learning how AD works. So here's a simple C# implementation of AD that relies on only two things: C#'s operator overloading, and arrays to represent the derivatives, which I think makes it pretty easy to understand. It's not particularly efficient, but it's simple! See the "Optimizations" section at the end if you want a very efficient specialization of this technique. What is Automatic Differentiation? Simply put, automatic differentiation is a technique for calcu