Skip to main content

NHibernate: Associations with Composite Primary Keys as Part of a Composite Primary Key

NHibernate is a pretty useful tool, but occasionally it's not entirely documented in a way that makes it's flexibility evident. Composite keys are a particularly difficult area in this regard, as evidenced by the numerous articles on the topic.

Most of the existing articles cover this simply enough, but there is one uncommon corner case I have yet to see explained anywhere: a composite primary key one of whose key properties is an association with a composite key. This is probably pretty uncommon and there are ways around it, hence the lack of examples, but as a testament to NHibernate's flexibility, it's possible! Here's the example in code listing only the primary keys:

public class MotorType
{
  public Horsepower Horsepower { get; protected set; }
  public VoltageType VoltageType { get; protected set; }
}
public class Motor
{
  public MotorType MotorType { get; protected set; }
  public Efficiency Efficiency { get; protected set; }
}

The tables look like this:

MotorType
HorsepowerIdVoltageTypeId
Motor
HorsepowerIdVoltageTypeIdEfficiencyId

Most people would probably map this with the Motor class having the three primary key properties, one for each column, and an additional many-to-one association referencing MotorType, but that shouldn't actually be necessary. Composite primary keys are possible, and the primary key can contain an association, therefore it should be possible, in principle, for that association to itself need a composite key.

And here's how it's done for the Motors table:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
  <class name="Motor, ExampleProject" table="Motors">
    <composite-id>
      <key-many-to-one name="MotorType">
        <column name="HorsepowerId" />
        <column name="VoltageTypeId" />
      </key-many-to-one>
      <key-property name="Efficiency" column="EfficiencyId" />
    </composite-id>
  </class>
</hibernate-mapping>

The MotorType class is a simple composite primary key:

<?xml version="1.0" encoding="utf-8" ?>
<hibernate-mapping xmlns="urn:nhibernate-mapping-2.2">
<class name="MotorType, ExampleProject" table="MotorTypes">
    <composite-id>
      <key-property name="Horsepower" column="HorsepowerId" />
      <key-property name="VoltageType" column="VoltageTypeId" />
    </composite-id>
</class>
</hibernate-mapping>

Comments

Popular posts from this blog

async.h - asynchronous, stackless subroutines in C

The async/await idiom is becoming increasingly popular. The first widely used language to include it was C#, and it has now spread into JavaScript and Rust. Now C/C++ programmers don't have to feel left out, because async.h is a header-only library that brings async/await to C! Features: It's 100% portable C. It requires very little state (2 bytes). It's not dependent on an OS. It's a bit simpler to understand than protothreads because the async state is caller-saved rather than callee-saved. #include "async.h" struct async pt; struct timer timer; async example(struct async *pt) { async_begin(pt); while(1) { if(initiate_io()) { timer_start(&timer); await(io_completed() || timer_expired(&timer)); read_data(); } } async_end; } This library is basically a modified version of the idioms found in the Protothreads library by Adam Dunkels, so it's not truly ground bre

Simple, Extensible IoC in C#

I just committed the core of a simple dependency injection container to a standalone assembly, Sasa.IoC . The interface is pretty straightforward: public static class Dependency { // static, type-indexed operations public static T Resolve<T>(); public static void Register<T>(Func<T> create) public static void Register<TInterface, TRegistrant>() where TRegistrant : TInterface, new() // dynamic, runtime type operations public static object Resolve(Type registrant); public static void Register(Type publicInterface, Type registrant, params Type[] dependencies) } If you were ever curious about IoC, the Dependency class is only about 100 lines of code. You can even skip the dynamic operations and it's only ~50 lines of code. The dynamic operations then just use reflection to invoke the typed operations. Dependency uses static generic fields, so resolution is pretty much just a field access + invoking a

Easy Automatic Differentiation in C#

I've recently been researching optimization and automatic differentiation (AD) , and decided to take a crack at distilling its essence in C#. Note that automatic differentiation (AD) is different than numerical differentiation . Math.NET already provides excellent support for numerical differentiation . C# doesn't seem to have many options for automatic differentiation, consisting mainly of an F# library with an interop layer, or paid libraries . Neither of these are suitable for learning how AD works. So here's a simple C# implementation of AD that relies on only two things: C#'s operator overloading, and arrays to represent the derivatives, which I think makes it pretty easy to understand. It's not particularly efficient, but it's simple! See the "Optimizations" section at the end if you want a very efficient specialization of this technique. What is Automatic Differentiation? Simply put, automatic differentiation is a technique for calcu