I've recently been researching optimization and automatic differentiation (AD) , and decided to take a crack at distilling its essence in C#. Note that automatic differentiation (AD) is different than numerical differentiation . Math.NET already provides excellent support for numerical differentiation . C# doesn't seem to have many options for automatic differentiation, consisting mainly of an F# library with an interop layer, or paid libraries . Neither of these are suitable for learning how AD works. So here's a simple C# implementation of AD that relies on only two things: C#'s operator overloading, and arrays to represent the derivatives, which I think makes it pretty easy to understand. It's not particularly efficient, but it's simple! See the "Optimizations" section at the end if you want a very efficient specialization of this technique. What is Automatic Differentiation? Simply put, automatic differentiation is a technique for calcu
Comments
That's not true on .Net Core/.Net 5+. When I run `(0.33F + 1F - 1F).ToString()` there, the output I get is "0.33000004".
All floating-point numbers have a limited number of significant digits, which also determines how accurately a floating-point value approximates a real number. A Single value has up to 7 decimal digits of precision, although a maximum of 9 digits is maintained internally.
If you're claiming that the expression that I quoted produces different results on your runtime, then great, you just proved my point again: that floating point is a quagmire because different optimizations and compilations of floating point code can produce different results.