Skip to main content

The Fun of Floating Point Numbers in one Image

Programming with floating point is always fun. Here's a nice little screen capture summarizing the insanity that sometimes arises:


.NET keeps 9 digits of precision internally, but typically only displays 7 digits of precision, so I had a hell of a time figuring out why a value from what's effectively a no-op was exceeding the 0.33F threshold I was looking for.

Losing equational reasoning is always fun, but this is even more bizarre than usual. Yay floating point!

Comments

svick said…
> .NET keeps 9 digits of precision internally, but typically only displays 7 digits of precision

That's not true on .Net Core/.Net 5+. When I run `(0.33F + 1F - 1F).ToString()` there, the output I get is "0.33000004".
Sandro Magi said…
What are you claiming is not true exactly? Because if you're disputing the claim that you quoted, then maybe you should take it up with Microsoft whose official documentation says:

All floating-point numbers have a limited number of significant digits, which also determines how accurately a floating-point value approximates a real number. A Single value has up to 7 decimal digits of precision, although a maximum of 9 digits is maintained internally.

If you're claiming that the expression that I quoted produces different results on your runtime, then great, you just proved my point again: that floating point is a quagmire because different optimizations and compilations of floating point code can produce different results.

Popular posts from this blog

async.h - asynchronous, stackless subroutines in C

The async/await idiom is becoming increasingly popular. The first widely used language to include it was C#, and it has now spread into JavaScript and Rust. Now C/C++ programmers don't have to feel left out, because async.h is a header-only library that brings async/await to C! Features: It's 100% portable C. It requires very little state (2 bytes). It's not dependent on an OS. It's a bit simpler to understand than protothreads because the async state is caller-saved rather than callee-saved. #include "async.h" struct async pt; struct timer timer; async example(struct async *pt) { async_begin(pt); while(1) { if(initiate_io()) { timer_start(&timer); await(io_completed() || timer_expired(&timer)); read_data(); } } async_end; } This library is basically a modified version of the idioms found in the Protothreads library by Adam Dunkels, so it's not truly ground bre...

Easy Automatic Differentiation in C#

I've recently been researching optimization and automatic differentiation (AD) , and decided to take a crack at distilling its essence in C#. Note that automatic differentiation (AD) is different than numerical differentiation . Math.NET already provides excellent support for numerical differentiation . C# doesn't seem to have many options for automatic differentiation, consisting mainly of an F# library with an interop layer, or paid libraries . Neither of these are suitable for learning how AD works. So here's a simple C# implementation of AD that relies on only two things: C#'s operator overloading, and arrays to represent the derivatives, which I think makes it pretty easy to understand. It's not particularly efficient, but it's simple! See the "Optimizations" section at the end if you want a very efficient specialization of this technique. What is Automatic Differentiation? Simply put, automatic differentiation is a technique for calcu...

Easy Reverse Mode Automatic Differentiation in C#

Continuing from my last post on implementing forward-mode automatic differentiation (AD) using C# operator overloading , this is just a quick follow-up showing how easy reverse mode is to achieve, and why it's important. Why Reverse Mode Automatic Differentiation? As explained in the last post, the vector representation of forward-mode AD can compute the derivatives of all parameter simultaneously, but it does so with considerable space cost: each operation creates a vector computing the derivative of each parameter. So N parameters with M operations would allocation O(N*M) space. It turns out, this is unnecessary! Reverse mode AD allocates only O(N+M) space to compute the derivatives of N parameters across M operations. In general, forward mode AD is best suited to differentiating functions of type: R → R N That is, functions of 1 parameter that compute multiple outputs. Reverse mode AD is suited to the dual scenario: R N → R That is, functions of many parameters t...