Skip to main content

The Fun of Floating Point Numbers in one Image

Programming with floating point is always fun. Here's a nice little screen capture summarizing the insanity that sometimes arises:


.NET keeps 9 digits of precision internally, but typically only displays 7 digits of precision, so I had a hell of a time figuring out why a value from what's effectively a no-op was exceeding the 0.33F threshold I was looking for.

Losing equational reasoning is always fun, but this is even more bizarre than usual. Yay floating point!

Comments

svick said…
> .NET keeps 9 digits of precision internally, but typically only displays 7 digits of precision

That's not true on .Net Core/.Net 5+. When I run `(0.33F + 1F - 1F).ToString()` there, the output I get is "0.33000004".
Sandro Magi said…
What are you claiming is not true exactly? Because if you're disputing the claim that you quoted, then maybe you should take it up with Microsoft whose official documentation says:

All floating-point numbers have a limited number of significant digits, which also determines how accurately a floating-point value approximates a real number. A Single value has up to 7 decimal digits of precision, although a maximum of 9 digits is maintained internally.

If you're claiming that the expression that I quoted produces different results on your runtime, then great, you just proved my point again: that floating point is a quagmire because different optimizations and compilations of floating point code can produce different results.

Popular posts from this blog

async.h - asynchronous, stackless subroutines in C

The async/await idiom is becoming increasingly popular. The first widely used language to include it was C#, and it has now spread into JavaScript and Rust. Now C/C++ programmers don't have to feel left out, because async.h is a header-only library that brings async/await to C! Features: It's 100% portable C. It requires very little state (2 bytes). It's not dependent on an OS. It's a bit simpler to understand than protothreads because the async state is caller-saved rather than callee-saved. #include "async.h" struct async pt; struct timer timer; async example(struct async *pt) { async_begin(pt); while(1) { if(initiate_io()) { timer_start(&timer); await(io_completed() || timer_expired(&timer)); read_data(); } } async_end; } This library is basically a modified version of the idioms found in the Protothreads library by Adam Dunkels, so it's not truly ground bre

Building a Query DSL in C#

I recently built a REST API prototype where one of the endpoints accepted a string representing a filter to apply to a set of results. For instance, for entities with named properties "Foo" and "Bar", a string like "(Foo = 'some string') or (Bar > 99)" would filter out the results where either Bar is less than or equal to 99, or Foo is not "some string". This would translate pretty straightforwardly into a SQL query, but as a masochist I was set on using Google Datastore as the backend, which unfortunately has a limited filtering API : It does not support disjunctions, ie. "OR" clauses. It does not support filtering using inequalities on more than one property. It does not support a not-equal operation. So in this post, I will describe the design which achieves the following goals: A backend-agnostic querying API supporting arbitrary clauses, conjunctions ("AND"), and disjunctions ("OR"). Implemen

Easy Automatic Differentiation in C#

I've recently been researching optimization and automatic differentiation (AD) , and decided to take a crack at distilling its essence in C#. Note that automatic differentiation (AD) is different than numerical differentiation . Math.NET already provides excellent support for numerical differentiation . C# doesn't seem to have many options for automatic differentiation, consisting mainly of an F# library with an interop layer, or paid libraries . Neither of these are suitable for learning how AD works. So here's a simple C# implementation of AD that relies on only two things: C#'s operator overloading, and arrays to represent the derivatives, which I think makes it pretty easy to understand. It's not particularly efficient, but it's simple! See the "Optimizations" section at the end if you want a very efficient specialization of this technique. What is Automatic Differentiation? Simply put, automatic differentiation is a technique for calcu